A case study for constrained learning neural root finders
نویسندگان
چکیده
This paper makes the detailed analyses of computational complexities and related parameters selection on our proposed constrained learning neural network root-finders including the original feedforward neural network root-finder (FNN-RF) and the recursive partitioning feedforward neural network root-finder (RP-FNN-RF). Specifically, we investigate the case study of the CLA used in neural root-finders (NRF), including the effects of different parameters with the CLA on the NRF. Finally, several computer simulation results demonstrate the performance of our proposed approach and support our claims. 2004 Elsevier Inc. All rights reserved.
منابع مشابه
A new partitioning neural network model for recursively finding arbitrary roots of higher order arbitrary polynomials
A new partitioning feedforward neural network (FNN) root-finder model for recursively finding the arbitrary (including complex) roots of higher order arbitrary polynomials is proposed in this paper. Moreover, an efficient complex version of constrained learning algorithm (CLA), which incorporates the a priori information, i.e., the constrained relation between the original polynomial coefficien...
متن کاملGeoid Determination Based on Log Sigmoid Function of Artificial Neural Networks: (A case Study: Iran)
A Back Propagation Artificial Neural Network (BPANN) is a well-known learning algorithmpredicated on a gradient descent method that minimizes the square error involving the networkoutput and the goal of output values. In this study, 261 GPS/Leveling and 8869 gravity intensityvalues of Iran were selected, then the geoid with three methods “ellipsoidal stokes integral”,“BPANN”, and “collocation” ...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملComprising the Empirical Equations of Runoff- Sediment Resulted from Sediment Rating Curves and Artificial Neural Network (Case Study: Ghadarkhosh Watershed, Ilam Province)
Being available the accurate data on carried sediment has accounted as an important factor for making decision about constructing of river structures and determining of dam life. To accomplish this object, a number methods have been proposed so that sediment rate curving as a hydrological method has been developed for doing it. Ignoring differences between season's values causes to lower the pr...
متن کاملUncertainty of Artificial Neural Networks for Daily Evaporation Prediction (Case Study: Rasht and Manjil Stations)
This research uses the multilayer perceptron (MLP) model to predict daily evaporation at two synoptic stations located in Rasht and Manjil, Guilan province, in north-west of Iran. Initially the most important combinations of climatic parameters for both of the stations were identified using the gamma test; and daily evaporation were modeled based on the obtained optimal combination. The results...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 165 شماره
صفحات -
تاریخ انتشار 2005